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PR~BL~ ON THE CONTACT OF TWO ELASTIC PLATES* 

A.M. KHLUDNHV 

The problem is considered of the contact between two elastic plates without a 
priori assumptions about the form of the contact set. The geometryoftheproblem 
r@sults in a natural definition of a convex set of allowable displacements, The 
solution yields the minimum of the functional energy in this set and satisfies a 
vaxiational inequality. The main result is the proof of the connectedness of the 
non-contact domain for an appropriate condition on the external load. A condition 
for no internal points of the contact set is also found. Analogous results hold for 
the contact between a shallow shell and a plate. Examples referring to problemson 
the contact between plates and shells are presented in /I/, where there is also an 
extensive bibliography. 

Let us consider the problem of the contact between two thin elastic plates with the bend- 
ing stiffnesses a, and a3. Let them occupy a domain L2 and be separated by a distance 62 0 
in the natural (undeformed) state. For definiteness, let the plates also be rigidly clamped 
on the boundary a&?. 

We define a closed convex set K = {U,vEH,'(a) / u - v > -6 almost everywhere In M)rn 
H,"(Q) x H,e(Q) and we let n (u,v) denote a functional of the energy of the two plates 

~(~1,~)=(a~jAu)*fa~(Au)*-2ZFra- 2Gu)*, (.>nm ’ 2 f*fdx 

Here Ho*@) is the S.L. Sobolev space of functions having derivatives to second order 
inclusive that are summable in D and are zero on dl;l together with the first derivatives, 1~ 
is the deflection of the upper plate, u of the lower, and F, G are external loads. We assume 
that the boundary #J is sufficiently smooth, and F,G belong to the space L1 (Q}, 

The solution (a,$~ K of the problem of minimizing the functional n in the set x exists 
and satisfies the variational inequality 

<a,Au(Au' - Au) _t a,Av(Av' - Au) - p (u' - u) - (1) 

G (v' -u)>*>U Vfu', V')EJi 

This inequality is the necessary and sufficient condition for a minimum. It can also be 
obtained directly without relying on the variational fOnm&XtiOn. The equilibrium equation 
for the upper plate has the form a,A%-- =p, where p> U is the pressure of the lower 
plate on the upper one. Analogously, for the lower plate a2AYv -G = -P. Therefore, for 
arbitrary smooth functions us, v " satisfying the inequality u' - ~'2 -6 and equal to zero 
together with the first derivatives on (3Q, the following relationship is valid 

<(a,A% - F)(u' - u) + (+A% - G)@' - @>n = 

<p (u’ - v’ - u -I- U)>D 

The right side is non-negative. Indeed, if there is no contact at the point x0 I then 

P 66) = 0. If 20 is a contact, then u (x0)- v(zO) = --6. And since u' fz,,) - V'(Q) > -6, then 

The reverse assertion will be 
pressure of the upper on the lower 
one (the condition of agreement of 

Let us note that the presence 
utilization of modern optimization 
linear elastic solid. In contrast 
a linear elastic and a rigid body, 
zero. 

proved below. If the inequality (1) is satisfEred, then the 
plate equals the pressure of the lower plate on the upper 
corresponding measures). 
of the variational formulation of the problem also permits 
methods. An analogous approach is developed in /2/ for a 
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the gap between elastic bodies in /2/ can be greater than 
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For ~>O,cp~H,~(52) and e>O the pair of functions (u + ecp,v) belongs to K, and 

consequently, II(u + eq,v)> II(u,v). We hence obtain 

<a,AuAcp + (*lz)ale (A(P)* - Fq>n > 0 

Passing to the limit as e+O, we conclude that the quantity v E a,A2u- F is a positive 
generalized function, and therefore, is a measure in the domain 8 /5/. This means that 

v(B) <+= for an arbitrary compact BCQ. It is analogously proved that -(a,A*v - G) is 

also a measure. These measures agree. In fact (u+ecp,u+eq)EK, cpEHo*(51), e>O, and 
therefore 

(a,AuAcp - Fcp + a,AvAcp - @>n>O 

Because of the arbitrariness of rp, we hence obtain agreement between the mentionedmeas- 

ures. 
The physical meaning of the measure v is the following: v(B) is the intensity of the 

action of one plate on the other in the set B. 
We denote the contact set byC = {zE!J 1 u(z)- u(z) = --6}.Correspondingly, N = Q\C 

is the non-contact domain. 
The carrier S(v) of the measure P is lumped in the set C. This follows from the fact 

that the equilibrium conditions are satisfied in N (in the sense of distributions) 

a,A% = F, a,A2v = G 
The following assertion is valid: if Fia, - Gla,>O, then the contact set has no inner 

points. 
In fact, we otherwise have A% = A% in the neighborhood of the point of contact, and 

this means 

via, - via, = A% - Fla, - 6% + G/a, = G/a, - Fla, < 0 

This contradicts the fact that Y is a measure. 
The assertion proved means that when the required inequality is satisfied there is no 

circle of arbitrarily small radius all of whose points are contact points. It will hence 
follow in the axisymmetric case that if contact points generally exist, then they form a set 
of circles with radii rl< r2<..., where there is not contact in the domain rt <r<ri+l. 

It turns out that if the contact point is isolated, then the pressure of one plane on 
the other at this point equals zero. Namely, if a, = a,, then the plates cannot have contact 
at an isolated point belonging to S(v). 

We use Lemma 4 (see below), according to which Au- AvELE,,(Q) for the proof. Since 
A* (U + u) = (F + G) al-l, then Au+ AVE L;,(Q) , and therefore, AU E I& (0). Let +~be an iso- 
lated contact point. Let B, denote a circle of radius r with center at zO. We consider the 
equation a,A'u= F satisied in ST0 = B,\ (~a) . We prove that this equation is satisfied inB,. 
It will hence follow that z,'Zs (v). Let F, E Hoa (Q) n HoI (ra) be a solution of the problem 

The 
internal 
in B,O. 
quantity 
harmonic 

The 
/4/ (see 
that the 
case the 

AF, = F, F, lee = 0 
r 

equation A (u,Au - F,)= 0 is valid in the domain B,O. From the results concerning the 
regularity for the biharmonic equation it follows that the function Av is continuous 
Because of the imbedding theorem the function F, is continuous in B,O . Since the 
a,Au - F, is bounded in B,O, then from the theorem on eliminable singularities for 
functions we obtain A((a,Au- F,)= 0 in B,. 
solution of contact problems is not generally smooth. In particular, the example 
also /5- 6/) in the problem of equilibrium over an obstacle, where it is established 
solution (with a specific obstacle) does not belong to the space WJ&,,@). In this 
following lemma is valid. 

Lemma 1. The imbedding u, VE H1S,,(S1) holds. 

Proof. Let &,~62, cQ be such domains that p(dP,,XJ)> p>O, q= const. We select the fun- 
ction v E C,a(Q,), cp.~ 1 on Q,,cp>0,1 cpI < i everywhere and we introduce the notation 

A,,h (I) = [h (z + rq) - 2h (I) + h (z - q)] 2-2 

(ei are the unit vectors). Let O<b< (l/&+. We set 

uh = u + hf~~A,,u, V& = v + I~zA,Iu 

Taking account of the inequality 1-22ilr2&0, we verify that uX- v,>-6, i.e.,(~~,v~)~ K. 
We now substitute (u'. D') = (uh, uh) in (1) . We obtain 

<a,AuA (q*Q) i- a&A ('czAilQ) n><F~2Az~~ + Gg??ri,u>c (2) 

We introduce the notation 
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di,h (3) = [h (I f ~q) - h (z)] r-l 

The following chain is valid, where the difference between its successive terms either 
equals zero or has the following upper estimated quantity 

c (II u Ia* + II u (/z li d,T MU) !I*) 
with constant c dependent only on the domain Q and the function P: 

(AuA (cp*A,,u)>,- (A (or) A (A,,cpQc- <A (VU) AirA (9~) c -) 
- (A (VU) d+d,,A (CPU)JQ - - (dir (A (CPU)) d:z (A (ou))'c 4 
-(A Vi7 (9~)) A (dt, (e@)'s 

Analogous manipulations are valid for the second term on the left side of inequality (2). 
The rightside isestimatedbytheCauchyinequality. Since l/wn,g c~)Awjl~ for an arbitrary func- 
tion w~h'~~(Q) with a constant independent of w, we then consequently obtain 

II 4, Ff4 II 2 + II dir (cc4 42 0 c (iI F II o* i II G II 2 + I! u II 2 + 
ii 0 I! s2 -I- II p II a II dir (Vu) it I i II 0 II a /I d,, (CPU) /I 11 

The constant c is here independent of T. Boundedness of its left side follows from this 
inequality , and this means VU, ~uEH~(Q) , i.e., II, uezII~,,(Q). Lemma 1 is proven. 

Lemma 2. The function AU (or Au 1 is semicontinuous from above (below) in the domain 
.8. 

Proof. Let $eEd(L1)n H,%(R) be the solution of the problem 

alA%@ = F; q = dqp/& = 0 on %J 

If Ue. qe are averages with infinitely differentiable kernel /I/, the functions u,$ (con- 
tinued outside P with the conservation of smoothness) and f= u-q, then becauseoftheGreen's 
formula we have 

1 
s 

. 
Afe (+) =s Af,(V)dl-&- s 

A2f, (u)ln r I + - Y I-‘dy 

m,w B,(x) (3 

Here B,(z) is a circle of radius r with center at the point 2, and a&&) is the bound- 
ary of B, (I). Since A% - A%>0 is the distribution sense, the A*fE= A%,-AhLIp,),% Because 
Inrlz-_yl -l<larlIz-YII"for rl>,rl from (3) and an analogous equality for Q, we obtain 

1 ’ 

-zG s 
Af, (Y) dy < & 

s 
Afs (8) dy 

es,(x) Bs,(x) 
We multiply this inequality by ml and then integrate once with respect to r between zero 

and r, then the second time with respect to r1 between r and r,. We will consequently have 

1 s 1 
7 At,(y)+< q s At, (Y)& 

s,(x) B,,(x) 

Passing to the limit here as e-0, we conclude that this inequality is valid for Af. 
Since Af is a summable function, then for almost all +EQ 

br (4 = -$- s Af (y)& - A/ (z). r-0 
s,(x) 

(41 

However, b(z) is a continuous non-increasing function such that it can be considered 
that Af is a function semi-continuous fromabove. Analogous reasoning can be performed for 

q==-EE. where F,EH~(Q) nH,‘(O) is a solution of the problem 

+Aaf = C; E = at/an = 0 in a&J 

and it can be shown that Ag is a function semicontinuous from below. Since A*, Ae=C@) by 

virtue of the theorem imbedding, then Lesnna 2 is proved. 
Now we note that Af is a subharmonic function in Q. Indeed, let CL be harmonic function 

in& (~9, that equals Af on aB,(z). Then Af<a in B,,(z). In fact 

Af Iasp E H"'(% (I)) 

hence, the function a exists. The inequality mentioned follows from the Green's formula for 

b, after the passage to the limit as r-0 and taking account of the relationship Ab,> !3 in 

Q. It is analogously proved that Ag is a superharmonic function in Q. 
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Lemma 3. For tl,e C the inequality Au&,) > Av@d is valid. 

Proof. We denote *=U-". According to the Green's formula, the equality 

1 
to (to) = II - 1,. 11 = s 

s 
10 W du. I*= & 

s 
Aw (y)lnrlz,--yl+dy 

dB,W B,W 

is valid. 
Since w (~)a-8 and w (z,)= -8, it then follows that I,>O. From this inequality we con- 

clude that there exists a sequence of points II = & (Jo) such that Aw (II) > 0 (vi -+Y,). Evident- 

ly AWE AU- AU is a function semicontinuous frcln above. Hence, after passing to the limit as 

i-r_ , we obtain AwOr,)>O. Letting r go to zero and again using the semicontinuity of Am 

from above, we conclude that Au(z~)>Av (+,). Lemma 3 is proved. 

Lermna 4. For a, = a2 the embedding Af- AgELi&(9) is valid. 

Proof. Let a(z) be a Dirac delta function. The convolution of two generalized funct- 
ions will be denoted by an asterisk. Furthermore, let &CQ and let vO' be a narrowing of 
the measure v’==vl~, on &. We consider the potential 

B . vo’ (0) = If (z - u) dv’ (id, H (4 = &ln 1 z 1-1 

By virtue of the Fubini theorem this potential is a locally Lebesgue s-able function, 
since vO' is a finite measure. We introduce the function 

Y (=) = Af (2) - Ag(+) + 28 * ~0' (=), + E Q, (5) 

and we prove it harmonic in Q,. We use the equality AH(+)= _a(+) as well as the associative 
property of the convolution for two finite cofactors. We have the chain of equalities 

A? = As +y = A'f -A*g+2Aeo(H+v,')=2v0'+2(Ae*H)* (6) 
vo' = 2~~' + 2 (e * AH) +vO' = 2v,,' - 2e l vp' = 0 

The relationship (5) is satisfied almost everywhere in P,. Since the functions -If*v.,'(z) 
and Af(z)- Ag(z) are subharmonic in P, while the mean value over a sphere of radius r with 
center at a given point converges for a subharmonic function to the value of the function at 
this point as r+O, then the equality (5) is satisfied for all t=QO. 

We now use the theorem of boundedness of the potential /3/. If the potential of the 
measure v has an upper bound on the carrier S(v), then it has an upper bound in all space. 
According to an earlier proof, the inequality Au(I~)&Av(z~) at each point of the carrier +, 
hence for all +E Q, n S (v), $ CC&,, we obtain frcnn the representation of (5) 

2 H(+o--)dv'(I)=P(zO)+Ag(Zo)-Af(2*)<-t00 s 
PI 

Therefore, the potential of the measure vl' (the narrowing of v' on 4) has an upper bound 
for all z. It also has a lower bound on 0,. Therefore, we conclude from (5) that the func- 
tion 1 &--_g[ is bounded in the domain a,,& cP1. Lemma 4 is proved. 

Theorem. If 6>O,a,=a, ad F-G,<O, then the noncontact domain will be connected. 

Proof. Since u. v are zero on the boundary and continuous in 6, then the non-contact 
domain contains the neighborhood of the boundary dn . We assume that the assertion of the 
theorem is not true. Then there exists a connected component Nl of the noncontact domain N 
whose points cannot possibly be connected by a curve lying in N, with the mentioned neighbor- 
hood of the boundary. Because of Lemma 3, the following relationship is satisfied on the 
boundary &V, 

Au (20) > Au (50) (7) 

Moreover, the equations 

are valid in the domain N,. 
The inequality 

follows from (7) and (8). 

a,A% = F, a,A$ = C 

Au (4 > Av (4, z E Nl 

(8) 

(9) 
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Noting that the equality U(L)-- V(X)= -_S is satisfied on the boundary 8.V,, and using 
the maximum principle, we conclude that u - v\< -_6 in N,. 
definition of N,. 

This relationship contradicts the 

Let us prove the inequality (9). Let the domains Q,, Q*, Q, be such that z,c 81, iii zQL, 
a, CQI, iri c Q. A representation analogous to (5) exists in the domain Q3. If the potential 
HOVE' is written in the form 

Il*v+=-p(r)+-& s In]+- Y Pdv' (I/) - 
v’ (Q,)lnm 

2n 
%\Rr 

then the representation mentioned acquires the form 

At (11 - Ag (*I = 2~ (2) + B th -z si Qa 

(b(z) is a continuous function for seQI). We hence conclude that 

(10) 

In m I I - y I-ldv’ (yf. 5 E Cl 

will converge to p(2) from above as r--O. According to the Egorov theorem, for arbitrary 
e>O there exists a closed subset U,cQ, such that v'(Q,\Q,)<e and pr converges uniformly 
to p on 0,. 

Furthermore, we set 

P,,&)=-& 5 In m 1 z - u (-1 dv,’ (v) 
fit\B,W 

a&)=--& 
s 

inmj~-yI,-‘dv~‘(~/) 
521 

where YE’ is the narrowing of the measure V' on Q,- Taking account of the uniform eonverg- 
ence of pP to p on 0, we obtain 

f ’ 
O<Pr,,(@-Pp,(dG~ 

s 
InmIx-yy-~dv’(y)+O 

Qtl-m,lr) 

uniformly on Q, as r-0, so that the functions pe are continuous on 0,. Let us note that 
S(v,') CQ, Therefore, we conclude by the theorem on the continuity of potentials /3/ that 
the Pe are continuous on 0,. 

Since p,>p, then 2~~ + 8 z Af - Ag in 8, by virtue of (lo). In particular, this inequal- 
ity is satisfied in 8X,. Then taking (7) into account, we obtain 2pe+ p 4 A* - AS>,0 on aN,. 
Since Ape = 0 and AS=0 in N,, then A (Zp,+ 8 + A* - A&) = A=$ - APB = F/a, - G/a, gO in .v,. BY 
virtue of the continuity of Zp,+ fl+ A*- AE in N,, we obtain from the maximum principle 

~P,+B-+-A$--AE>O~~N~ 

Since S (v') n N, = 0, then fur any IEN~ 

(11) 

I' 
o<P,(z)-P(fz)<~ 

? 
lnm~~-~~-~dfv'-~~)-O, c-0 

PI 

Hence, A*(+- A~(z);Zlim~-.~(-22p,Lz) - fi (3)) = --tp(zf - @ (I), + ENS follows from (11). Comparing 
(11) to (10) we have the inequality (9). 

In conclusion, we consider the case of contact between a shallow shell and a plate. Let 

l? 11 = % + k,w. s21 = v, + k,w, el, I= U, + v, 

be the strain of the shell middle surface, and 

Eh 
NIP = - e1z 

2P-b 6) 

the forces. Here U, v, w are shell displacements in the planes =1r =!a and the deflection, 

respectively, h 1s the thickness, E is the Young's modulus, CJ is the Poisson's ratio and k,, 
k, are the curvatures in the directions of the x,,rz axes. Letwdenote theplatedefIection 
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by considering, for definiteness, that the shell is above the undeformed plateintheundeform- 

ed state. Let the following support conditions also be satisfied on the boundary 

a = u = u, = ifw/dn = W = dW/h = 0 

If s = @(s1,s2)>0 is the shape of the shell middle surface (@ is a smooth function), 
then the solution a, V. W, W of the problem of minimizing the energy functional in the set 
of allowable displacements will satisfy the following relationships 

(w, W) E K : (a,Aw (Aw’ - Aw) + (k,N,, + k,N,, - 
F)(w’ - w) + a,AW (AW’ - AW) - G (W’ - W)>Q > 0 

V (w’, W’) E K 

(12) 

where 

K = {(w’, W’)E H,‘(Q) x Ho*(Q)I w'- W'> -UJ almost everywhere in 52). 

Here fl, f2, F are given external loads on the shell along the z1,z2, z axes, respectiv- 
ely, G is the load on the plate along the z-axis, and a,, a2 are cylindrical stiffnessofthe 
shell and plate. 

Assertions analogous to those presented in the case of contact of two plates are valid 
for the problem (12). Namely, if F,la,- G/a,> 0,then the contact set has no interior points, 
F, = F - k,N,,- k,N,,. If @> 0 on the boundary of the domain a62, a, = a, and F, - G < 0. 
then the noncontact domain will be connected. 

The proof of these assertions is executed exactly the same as the above by using the 
measures definable naturally in the domain B in this case. 
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