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PROBLEM ON THE CONTACT OF TWO ELASTIC PLATES’

A.M. KHLUDNEV

The problem is considered of the contact between two elastic plates without a
priori assumptions about the form of the contact set. The geometry of the problem
results in a natural definition of a convex set of allowable displacements, The
solution yields the minimum of the functional energy in this set and satisfies a
variational inequality. The main result is the proof of the connectedness of the
non-~contact domain for an appropriate condition on the external lcad. A condition
for no internal peoints of the contact set is also found. Analogous results hold for
the contact between a shallow shell and a plate. Examples referring to problems on
the contact between plates and shells are presented in /1/, where there is alsec an
extensive bibliography.

Let us consider the problem of the contact between two thin elastic plates with the bend-
ing stiffnesses a; and a;. Let them occupy a domain { and be separated by a distance §2» 0
in the natural (undeformed) state. For definiteness, let the plates alsoc be rigidly clamped
on the boundary 4Q .

We define a closed convex set K = {u, v & H3(Q) |u — v > —8 almost everywhere in {}in
HE(Q) x HP () and we let Il (u,v) denote a functional of the energy of the two plates

I1 (m, 0) = ey (Au)? + a9 (A0)% — 2Fu — 260>, (- p == S (-ydz
Q

Here H2?(Q) is the S.L. Sobolev space of functions having derivatives to second order
inclusive that are summable in £ and are zero on g together with the first derivatives, u
is the deflection of the upper plate, py of the lower, and ¥, G are external loads. We assume
that the boundary 4Q is sufficiently smooth, and F, G belong to the space L?(Q).

The solution (u,v) = K of the problem of minimizing the functional Il in the set K exists
and satisfies the variational inequality

{ayAu (Au' — Au) + aAv (AV — Av) — F (@' — u) = ()
G —vpe>t V@, vk t

This inegquality is the necessary and sufficient condition for a minimum. It can alsc be
obtained directly without relying on the variational formulation. The equilibrium equation
for the upper plate has the form a;A*w — F = p, where p >0 is the pressure of the lower
plate on the upper one, BAnalogously, for the lower plate a,A™w — G = —p. Therefore, for
arbitrary smooth functions u', v’’ satisfying the inequality u' — v > —0 and equal to zero
together with the first derivatives on 4L, the following relationship is valid

Ya Al — FY(u — u) + (8,4 — G}’ — v)dg =
{plw —v —u+vhe

The right side is non-negative. Indeed, if there is no contact at the point Zg , then
p{xe) =0. If z¢ is a contact, then u (zg) — v (2y) = —b. and since u' {(z) — v (x¢) > —§, then
u’ (o) — v (o) — 1 (zg) + v {(ze) > 0.

The reverse assertion will be proved below. If the inequality (1) is satisfied, then the
pressure of the upper on the lowexr plate equals the pressure of the lower plate on the upper
one {the condition of agreement of corresponding measures).

Let us note that the presence of the variational formulation of the problem also permits
utilization of modern optimization methods. An analogous approach is developed in /2/ for a
linear elastic solid. In contrast teo the classical Signorini problem on the contact between
a linear elastic and a rigid body, the gap between elastic bodies in /2/ can be greater than
zero.
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For 9> 0,9 =H2*(Q) and &>0 the pair of functions (u + e, v) belongs to K, and
consequently, Il (v + e, v) > Il (u, v). We hence obtain

(g Aubg + (Y)ase (Ag)* — Fode 22 0
Passing to the limit as e — 0, we conclude that the quantity v = g,A%u — F is a positive
generalized function, and therefore, is a measure in the domain @ /3/. This means that
v (B) (+o for an arbitrary compact B (C Q. It is analogously proved that —(a, A% — G)  is
also a measure. These measures agree. In fact (u-tep, v+ e K, o= HS2(RQ), e >0, and
therefore

{a;Aulp — Fo + a,AvAg — Ggdg > 0

Because of the arbitrariness of ¢, we hence obtain agreement between the mentioned meas-
ures.

The physical meaning of the measure v is the following: v (B) is the intensity of the
action of one plate on the other in the set B,

We denote the contact set by C = {z = Q | u (z) — v (z) = —8}. Correspondingly, N =Q\ C
is the non-contact domain.

The carrier § (v) of the measure v is lumped in the set (. This follows from the fact
that the equilibrium conditions are satisfied in /N (in the sense of distributions)

GAu = F, a,A% = @G
The following assertion is valid: if Fla, — G/a, > 0, then the contact set has no inner
points.
In fact, we otherwise have A2y = A% in the neighborhood of the point of contact, and
this means

vie, — vl/a, = A*u — Fla, — A% + Gfa, = Gla, — Fla, <0

This contradicts the fact that v is a measure.

The assertion proved means that when the required inequality is satisfied there is no
circle of arbitrarily small radius all of whose points are contact points. It will hence
follow in the axisymmetric case that if contact points generally exist, then they form a set
of circles with radii r; <{ry<{..., where there is not contact in the domain r; <{r < ri,.

It turns out that if the contact point is isolated, then the pressure of one plane on
the other at this point equals zero. Namely, if g, = 4,;, then the plates cannot have contact
at an isolated point belonging to § (v).

We use Lemma 4 (see below), according to which Au-— Ave L. Q) for the proof. Since
A% (u 4+ v) = (F + G) g;2, then Au+ &ve LY, @) , and therefore, Aues Ly, R). Let z, be an iso-
lated contact point. Let B, denote a circle of radius 7 with center at 2,. We consider the
equation aA*u=F satisied in B,°= B,.\ {z,} . We prove that this equation is satisfied in B,.
It will hence follow that z, €S (v). Let F,e H? Q) H2(®) be a solution of the problem

AFy=F, F, |oB, =0

The equation A (a,Au — F,) = 0 is valid in the domain B,°. From the results concerning the
internal regularity for the biharmonic equation it follows that the function Au is continuous
in B,°. Because of the imbedding theorem the function ¥, is continuous in B,°. Since the
quantity @Au—F, is bounded in B%, then from the theorem on eliminable singularities for
harmonic functions we obtain A (g;Au— Fg)= 0 in B,.

The solution of contact problems is not generally smooth. 1In particular, the example
/4/ (see also /5-6/) in the problem of equilibrium over an obstacle, where it is established
that the solution (with a specific obstacle) does not belong to the space Wj . (). In this
case the following lemma is valid.

Lemma 1. The imbedding u, v & Hiy (Q) holds.

Proof. ©Let 9,c 9,9 be such domains that p (60,,60)> ¢>0, ¢ = const. We select the fun-
ction ¢ &™), $=1 on Q,, ¢>0,|¢| <1 everywhere and we introduce the notation

ALk (z) = [h (z + Te;) — 2k (2) + h (z — 1Te;)] 12
(e; are the unit vectors). Let 0< i< (/)1 We set
u, = u+ AMEA u, vy = v+ AgA v

Taking account of the ineguality 1—2//12»0, we verify that u, — nw2—=06 i.e., (i, 1) e K.
We now substitute (u,v)= (4, ») in (1). We obtain

<ayBud (A u) + aAvA (¢RALT)) o > C(F@?A u + Gg2A, g (2)

We introduce the notation
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dizh (z) = [h (z + Te;) — h (2)] 71
The following chain is valid, where the difference between its successive terms either
equals zero or has the following upper estimated quantity
clufla®+ fulafidy (Pu) iz
with constant ¢ dependent only on the domain & and the function ¢:

CAud (@A ju)yg — <A (Qu) A (A,,tpu))n — <A (pu) A4 (qu) o~
— (A (pu) d_y,d, A (Qu)og — — <di (A (Qu)) d,; (A (pu))>q —
— <A@, (qu)) A {d,; (Purg

Analogous manipulations are valid for the second term on the left side of inequality (2).
The rightside is estimatedby the Cauchy inequality, Since |wj|,< c¢)Aw|, for an arbitrary func-
tion we Hy* (®) with a constant independent of w, we then consequently obtain

A {, A2 aAd fenes\ 2 2 - .
die (@ulls® T g (PUIf2 < e iﬁ £ 1|o' +1i& i

fola® +lalaldy @u) s+ |
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Lemma 2. The function Au (or Av) is semicontinuous from above (below) in the domain
.Q.
Proof. Let v = H*(Q) | HS5 (@) be the solution of the problem
@AW = F; $= o¢/0n = 0 on iQ
If u, Y, are averages with infinitely differentiable kernel /7/, the functions u,¥ (con-

tinued outside Q with the conservation of smoothness) and f= u—vy, then because of the Green's
formula we have

1 1 "
M@ =g | M-z § A @riz— Py 7
8B (=) B (x) (3)

Here B, (z) is a circle of radius r with center at the point 2, and 4B, (z) is the bound-
ary of B, (z). Since A% — AW >0 is the distribution sense, the Alf, = A%y, — AW, > 0. Because

Inr|lz—ylt<<lnnpjz—y|? for n>r from (3) and an analogous equality for 7n, we obtain
ST AP Coar g
2mr .) Bl \Y)OY X 23". .) Ojg\y) oy
B,(x) 8B, (x)

We multiply this inequality by rry and then integrate once w1th respect to I between zero
and 7~ then the second time with respect to n, between r and 7. We Will conseguently have

1
Q At dy < o3 S Ofe () dy
B,(x) By (x)

Passing to the limit here as & -0, we conclude that this inequality is valid for A&f.
Since Af is a summable function, then for almost all ze®

1
b, (2) =5 X Af (y)dy — Af(z), r—0 (4)
B(x)

However, b,(2) is a continuous non-increasing function such that it can be considered

that Af is a function semi- continuous from above. Analogous reasoning can be performed

v~§, where EeH* () N H2 (R) is a solution of the problem
A% = G; E=0%/on =0 in Q
and it can be shown that Ag is a function semicontinuous from below. Since Ay, Afe=C @) by
virtue of the theorem imbedding, then Lemma 2 is proved.
Now we note that Af is a subharmonic function in Q. Indeed, let @ be harmonic function
in B, (z), that equals Af on 8B, (z). Then Af<{a in By (z). 1In fact

Aflosym € H'* (0B, (2))
hence, the function @ exists. The inequality mentioned follows from the Green's formula for

b, after the passage to the limit as r— 0 and taking account of the relationship Ab, >0 in
Q. Tt is analogously proved that Ag is a superharmonic function in Q.
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Lemma 3. For z,= C the inequality Au (zo) > Av{(zo) is valid.
Proof. We denote w=u~ v. According to the Green's formula, the equality

1
wEy=h—1I, L= S wdy, .= < S Aw () Inr|zy—y | dy
8B (x) B(xs)

is valid.

Since w()>—6 and w (z)= —8, it then follows that I,>0. From this inequality we con-
clude that there exists a sequence of points y, e B, (z,) such that Aw(y) >0 (y; —»y,). Evident-
ly Aw= Au— Av is a function semicontinuous from above. Hence, after passing to the limit as
i oo, We Obtain Aw (y) > 0. Letting r go to zero and again using the semicontinuity of Aw
from above, we conclude that Au (zy) > Av (z,). Lemma 3 is proved.

Lemma 4. For g, = a, the embedding Af — Ag & Ly () is valid.

Proof. Let e(x) be a Dirac delta function. The convolution of two generalized funct-
ions will be denoted by an asterisk. Furthermore, let f,cQ and let v,/ be a narrowing of
the measure + =wv/g, on Q,. We consider the potential

1
Hovo’(z)=§.H(z—v)dV’(v)» H@==lnlz[?

By virtue of the Fubini theorem this potential is a locally Lebesgue summable function,
since v, is a finite measure. We introduce the function

V(@)= Af (z) — Ag (2) + 2H = v’ (z), 2 = R, (5)

and we prove it harmonic in Q,. We use the equality AH(s)= —e(z) as well as the associative
property of the convolution for two finite cofactors. We have the chain of equalities

Ay = Agwy= A% — A%g 4 2Ae s (H s vy') = 2vy' + 2 (Ace H)» (6
Vo' = 2vy 4 2(ew AH) e vy = 2v) — 28 ev,’ = 0

The relationship (5) is satisfied almost everywhere in Q,. Since the functions —H »v, (7)
and Af (z) — Ag (z) are subharmonic in @, while the mean value over a sphere of radius r with
center at a given point converges for a subharmonic function to the value of the function at
this point as r-» (0, then the equality (5) is satisfied for all =z e Q,.

We now use the theorem of boundedness of the potential /3/. If the potential of the
measure v has an upper bound on the carrier § (v), then it has an upper bound in all space.
According to an earlier proof, the inequality Au (z,) > Av(z,) at each point of the carrier gz,
hence for all z,=Q,N S (), 8, C8, we obtain from the representation of (5)

2§ # @0 —y)av () = v (20) + Ag (@) — A (2) <+ o0
2
Therefore, the potential of the measure v, (the narrowing of + on Q,) has an upper bound
for all =z. It also has a lower bound on ;. Therefore, we conclude from (5) that the func-
tion |Af— Ag| is bounded in the domain Q,, 2, CQ,. Lemma 4 is proved,

Theorem. If 6>0,q, =g, and F — G 0, then the noncontact domain will be connected.

Proof. Since u, v are zero on the boundary and continuous in [} , then the non-contact
domain contains the neighborhood of the boundary 92 . We assume that the assertion of the
theorem is not true. Then there exists a connected componerit N; of the noncontact domain N
whose points cannot possibly be connected by a curve lying in N, with the mentioned neighbor-
hood of the boundary. Because of Lemma 3, the following relationship is satisfied on the
boundary 0N,

Au (zg) > Av (z) (7)
Moreover, the eguations
@A = F, q,A% =G (8
are valid in the domain N,.
The inequality
Au (z) > Av (z), z = N, (9)

follows from (7) and (8).
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Noting that the equality u (z)-— v(z)= —§ is satisfied on the boundary &Y,, and using
the maximum principle, we conclude that u — v <{ —§ in &,. This relationship contradicts the
definition of X,.

Let_us prove the inequality (9). Let the domains 4, @, Qs be such that N, 8, @, =,
, -0, @yc Q. A representation analogous to (5) exists in the domain £s. If the potential
Hwvs (z) is written in the form

1 v (@) In
II»vs’(z)=—p(z)+-—z; S ln]:—-y]‘ldv’(g)--------“(—:‘,_!;[—-1
(AN )
1
) =— Slnmix«-y{‘ldv’{y}, m = const > diam @
&

then the representation mentioned acquires the form
Af(2) — g (@) =2p (&) +- P (2), 2 = Qs (1o

B () is a continuous function for zs),). We hence conclude that
1 .
pr(x)=—~2—u~ § Inmiz—yildv(y), z=0,
N\B{x}

will converge to p{z) from above as r-+0. According to the Egorov theorem, for arbitrary
e>0 there exists a closed subset &,CQ; such that v @,\QJ<e and p, converges uniformly
to p on Q.

Furthermore, we set

Py (@) = = 5= S lnm|z—y|rav, (v)
anB,m

1
Py (&) = — 5= Sinmlx—-yl‘ldvg' )
O

where v, is the narrowing of the measure v on g,. Taking account of the uniform converg-
ence of p. to p on 2, we obtain
0<p, (&) —p @< g | lamlz—y[idv ()0
NB {2
uniformly on Q, as r-—0, so that the functions p, are continuous on gQ,. Let us note that
§(v,/) TR, Therefore, we conclude by the theorem on the continuity of potentials /3/ that
the p, are continuous on ;.

Since p,>p, then 2p,+ B> Af— Ag in Q, by virtue of (10). In particular, this inequal-
1ty is satisfied in ¥, . Then taking (7) into account, we obtain 2p,+ B+ Ay — AE >0 on BN,
since Ap,=0 and Ap=0 in N, then AQp,+f+ Ay — AR = ARy — ASE = Play, — Gla, <9 in V. By
virtue of the continuity of 2p, + B+ Ay — Af in w,, we obtain from the maximum principle

2py + B -+ Ap — AE > 0in N, (11)
Since S(W)N Ny =, then for any ze= N,
0< Py (B —p (@) < g Y lamlz—ydE =31 =0, =0
&

Hence, A (z) — A% (z) 3> lilews (—2p, (&) — B (2)) = —2p (g} — B (2}, z = ¥; follows from (11}. Comparing

{11} to (10) we have the inequality (9).
In conclusion, we consider the case of contact between a shallow shell and a plate. Let

81 = Uy T R, By = Uy 4 KW, 84y =y + U,

be the strain of the shell middle surface, and

Nu=

Eh En
r—r (&n + Ofn),  Nm= 3=y (e + 0t11)

Eh
N12=2(—1—+—6'5812
the forces. Here 4, ¥, W are shell displacements in the planes I, Tz and the deflection,

respectively, A 1s the thickness, E is the Young's modulus, 0 is the Poisson's ratio and k,,
k, are the curvatures in the directions of the gz, z, axes. Let W denote the plate deflection
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by considering, for definiteness, that the shell is above the undeformed plate in the undeform-
ed state. Let the following support conditions also be satisfied on the boundary

u=v=w=0won=W =0W/on =0

If z = ® (z,, 2,) > 0 is the shape of the shell middle surface ((p is a smooth function),
then the solution u, v. w, W of the problem of minimizing the energy functional in the set
of allowable displacements will satisfy the following relationships

(w, W) & K : {a,Aw (Aw' — Aw) + (kyNyy + koNypp — (12)
FYw' — w) + a,AW (AW — AW)—G (W — W)e > 0
V@, W) K

Ny, Ny, Ny, 2™ -
0z, + 0z, =—In 0z, + 9z, I2

where

EK={w,W)esH? Q) x H? (Q)|w — W > —O® almost everywhere in Q}.

Here f,, f,, F are given external loads on the shell along the uz,,z,, z axes, respectiv-
ely, G is the load on the plate along the z-axis, and a,, @, are cylindrical stiffness of the
shell and plate.

Assertions analogous to those presented in the case of contact of two plates are valid
for the problem (12). Namely, if F/a, — Gla, > 0, then the contact set has no interior points,
Fo=F — Ny — keNyp. If ©@ >0 on the boundary of the domain 9Q, ¢, = ¢, and F,—G<0,
then the noncontact domain will be connected.

The proof of these assertions is executed exactly the same as the above by using the
measures definable naturally in the domain Q in this case.
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